Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Tris(2-methylquinoline-8-selenolato$\left.\kappa^{2} N, S e\right)$ antimony (III)

Elga Silina, ${ }^{\text {a* }}$ Sergey Belyakov, ${ }^{\text {b }}$ Janis Ashaks, ${ }^{\text {a }}$ Lucija Pecha ${ }^{\text {a }}$ and Daina Zaruma ${ }^{a}$

${ }^{\text {a }}$ Institute of Inorganic Chemistry, Riga Technical University, 34 Miera Street, Salaspils, LV 2169, Latvia, and ${ }^{\mathbf{b}}$ Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV 1006, Latvia
Correspondence e-mail: silins@lza.Iv

Received 13 November 2006
Accepted 8 December 2006
Online 23 January 2007
The title complex, $\left[\mathrm{Sb}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NSe}\right)_{3}\right]$, has a $3 \mathrm{Se}+3 \mathrm{~N}$ distorted octahedral geometry at the Sb atom. The structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

This work represents a continuation of our systematic investigations of internal complexes of p elements in the partialvalence state $\left(M=\mathrm{As}^{\mathrm{III}}, \mathrm{Sb}^{\mathrm{III}}\right.$ or $\left.\mathrm{Bi}^{\mathrm{III}}\right)$ with the bidentate ligands 8 -hydroxyquinoline ($8-\mathrm{Oq}$), 8-mercaptoquinoline (8 Sq) and 8 -hydroselenoquinoline (8 -Seq). The coordination polyhedra of the central atoms are different in the molecular structures of 8 -mercaptoquinolinates $M(8-\mathrm{Sq})_{3}$: As is defined as $3 \mathrm{~S}+\mathrm{N}$ with only one bidentate ligand (Matjuhina et al., 1984), Sb is a $3 \mathrm{~S}+3 \mathrm{~N}$ distorted octahedron (Pech et al., 1973), and Bi is a distorted $3 \mathrm{~S}+3 \mathrm{~N}$ pentagonal pyramid with an apical S atom (Silina et al., 2000).

These molecular structures lead to the suggestion that the unshared metal electron pair (E) is directed between the $M-$ N vectors corresponding to the direction of weak $M-\mathrm{N}$ coordination bonds. However, the As (Silina et al., 2004), Sb (Silina et al., 1997) and Bi 2-methyl-8-mercaptoquinolinates, $M\left[2-\mathrm{CH}_{3}(8-\mathrm{Sq})\right]_{3}$, are isostructural. The central metal atom occurs in a $3 \mathrm{~S}+3 \mathrm{~N}$ octahedral geometry with approximate C_{3} symmetry. In accordance with the $M\left[2-\mathrm{CH}_{3}(8-\mathrm{Sq})\right]_{3}$ geometries and in the context of the $M(8-\mathrm{Sq})_{3}$ structures, we consider the electrostatic interaction of the unpaired electrons (E) of the As, Sb and Bi atoms with one H atom from each methyl group as the reason for the occurrence of isostructural compounds. Such an interaction is interpreted as a weak branched locking intramolecular hydrogen bond (see scheme). This interaction evidently plays a determining role in the formation of the $\mathrm{As}\left[2-\mathrm{CH}_{3}(8-\mathrm{Sq})\right]_{3}$ complex, where the As $-N$ bonds are in the range 2.641 (3)-2.719 (4) \AA, but can hardly be the reason for the M-containing rings closing in. Diffraction studies of the title complex, $\mathrm{Sb}\left[2-\mathrm{CH}_{3}(8-\mathrm{Seq})\right]_{3}$, (I), should quantify the effect of changing the ligand atom
from S to Se on the molecular and crystal structures of (I) and the analogous complex, $\mathrm{Sb}\left[2-\mathrm{CH}_{3}(8-\mathrm{Sq})\right]_{3}$, (II).

(I)

The molecular structure of (I) is depicted in Fig. 1. The dihedral angle between the 2-methyl-8-hydroselenoquinoline ligand planes $L 1$ and $L 2$ is $58.40(3)^{\circ}$, that between planes $L 1$ and $L 3$ is $96.94(4)^{\circ}$, and that between planes $L 2 / L 3$ is $96.02(4)^{\circ}\left(L 1-L 3\right.$ are defined in Fig. 1). The $S b^{\text {III }}$ atom possesses a distorted $3 \mathrm{Se}+3 \mathrm{~N}$ octahedral coordination geometry, with an average $\mathrm{Sb}-\mathrm{Se}$ bond length of 2.6097 (7) \AA (Table 1), similar to $\mathrm{Sb}(8-\mathrm{Seq})_{3}$, (III), and data from the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002). The $\mathrm{Se}-\mathrm{Sb}-\mathrm{Se}$ angles have an average value of 87.14 (2) ${ }^{\circ}$.

The Se and N atoms of the three bidentate ligands form five-membered metal-containing rings. The $\mathrm{Se}-\mathrm{Sb}-\mathrm{N}$ chelate angles [mean $71.4(1)^{\circ}$] are smaller than the $\mathrm{Sb}-\mathrm{Se}-$ C angles [mean $104.9(2)^{\circ}$]. The three chelate rings have dihedral angles between the $\mathrm{Se} / \mathrm{Sb} / \mathrm{N}$ and $\mathrm{Se} / \mathrm{C} / \mathrm{C} / \mathrm{N}$ planes of 29.04 (4) (L1), $7.40(5)(L 2)$ and $0.83(6)^{\circ}(L 3)$. The Sb atom deviates from the SeCCN planes by -1.0787 (4) (envelope conformation, L1), 0.2893 (3) (L2) and 0.0294 (4) \AA (L3), whereas in (II), the corresponding angles are $4.3,17.6$ and

Figure 1
The molecular structure of (I), showing the ligands and the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. $L 1, L 2$ and $L 3$ represent the ligand planes used in the Comment.
17.9°. The $\mathrm{Se} / \mathrm{Sb} / \mathrm{N}$ coordination planes in (I) are almost perpendicular to one another, with dihedral angles between these planes in the range $83.44(2)-90.15(3)^{\circ}$ [84.45 (4)90.78 (4) ${ }^{\circ}$ in (II)].

The $\mathrm{Sb}-\mathrm{N}$ bonds [mean 2.826 (4) \AA] are longer than and trans to the $\mathrm{Sb}-\mathrm{Se}$ bonds, slightly longer than those in (II) and (III), and ca 30% longer than the sum of the covalent radii (Σ_{CR}) of Se and N (Campbell, 1975). The mean value of the $\mathrm{N}-\mathrm{Sb}-\mathrm{N}$ angles is $112.06(14)^{\circ}$, with $\mathrm{N} 11-\mathrm{Sb} 1-\mathrm{N} 12=$ $120.75(14)^{\circ}$, or 13° greater than the other two angles. The equatorial $\mathrm{Se}-\mathrm{Sb}-\mathrm{N}$ interligand angles are close to 90°. In (I), the quinolinyl bond lengths and angles of the ligand are normal (Allen, 2002).

In (I), the intramolecular $\mathrm{Sb} \cdots \mathrm{C}$ distances are 3.764 (8) (C1), 3.698 (7) (C2) and 3.667 (7) A (C3), and these are greater than the $\mathrm{Sb} \cdots \mathrm{C}$ distances in (II) [mean 3.655 (7) \AA]. Therefore, quantitative changes in the geometry of the complex due to an $\mathrm{S} \rightarrow \mathrm{Se}$ substitution in group VI have resulted in subtle changes in (I) compared with (II).

Differences in the nature of the ligand atoms in (I) and (II) appear in the crystal packing in different space groups, with (I) in $C 2 / c$ and (II) in $P 2_{1} / c$. Intermolecular interactions corresponding to $\pi-\pi$ interactions cause different bending of the metal-containing rings, and consequently a different spatial disposition of the quinoline rings in (I). Quinoline ring $L 1$ partially overlaps ring $L 1^{i}$ of a symmetry-related molecule at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, with a centroid-to-centroid distance of $3.639 \AA$. There are four $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions of note and details of these are given in Table 2 and Fig. 2.

The main result of this study is that an $\mathrm{S} \rightarrow$ Se substitution of the group VI ligand atoms does not change the nearest order for the central atom of (I) compared with (II). However, the overall crystal structure of (I) differs from (II).

Figure 2
Part of the crystal structure of compound (I), showing the three shortest $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions (double dashed lines) from Table 2. Heavy dashed lines indicate the $\mathrm{Se}-\mathrm{Sb}$ bonds. For the sake of clarity, H atoms and transannular $\mathrm{N}-\mathrm{Sb}$ bonds have been omitted.

Experimental

2,2'-Dimethyl-8,8'-diquinolyl diselenide (0.1 g) was dissolved in 3 M $\mathrm{HCl}(1 \mathrm{ml})$. Ethanol (5 ml) and 50% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(0.5 \mathrm{ml})$ were added, and the mixture was kept for 5 min at room temperature. A saturated aqueous $\mathrm{Na}\left(\mathrm{O}_{2} \mathrm{CCMe}\right)$ solution (2 ml) and a solution (2 ml) containing $\mathrm{K}(\mathrm{SbO}) \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}(0.045 \mathrm{~g})$ were added. The resulting amorphous pale-yellow precipitate was filtered off, washed with water and dried in air (yield $0.1 \mathrm{~g}, 85 \%$). Single crystals of (I) were grown from a solution in CHCl_{3}.

Crystal data

$\left[\mathrm{Sb}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NSe}\right)_{3}\right]$
$M_{r}=785.16$
Monoclinic, C2/c
$a=40.0004$ (7) \AA
$b=8.8672$ (1) \AA
$c=16.9706$ (4) \AA
$\beta=111.0625$ (8$)^{\circ}$
$V=5617.17(18) \AA^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: Gaussian
integration based on 12 indexed
crystal faces (NUMABS;
Coppens, 1970)
$T_{\text {min }}=0.287, T_{\text {max }}=0.726$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0913 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

Sb1-Se1	$2.6069(7)$	Sb1-N11	$2.829(4)$
$\mathrm{Sb} 1-\mathrm{Se} 2$	$2.6081(7)$	$\mathrm{Sb} 1-\mathrm{N} 12$	$2.865(4)$
$\mathrm{Sb} 1-\mathrm{Se} 3$	$2.6140(7)$	$\mathrm{Sb} 1-\mathrm{N} 13$	$2.785(5)$
			$81.71(2)$
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 2$	$88.94(2)$	$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 3$	
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 3$	$90.78(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1, C g 2$ and $C g 3$ are the pyridine ring centroids of the quinoline systems containing atoms N11, N12 and N13, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{Cg} 2^{\text {i }}$	0.93	2.62	3.512 (7)	161
$\mathrm{C} 52-\mathrm{H} 52 \cdots \mathrm{Cg} 3^{\text {ii }}$	0.93	2.71	3.629 (9)	170
$\mathrm{C} 71-\mathrm{H} 71 \cdots \mathrm{Cg} 3^{\text {iii }}$	0.93	2.81	3.587 (8)	142
$\mathrm{C} 73-\mathrm{H} 73 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.84	3.686 (8)	151

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x,-y-1, z+\frac{1}{2}$; (iii) $x+\frac{1}{2}, y+\frac{1}{2}, z-1$; (iv) $x, y+1, z$.

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic rings or 0.96 A for methyl groups, and refined with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic rings or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

metal-organic compounds

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: DIRDIF (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus (Mackay et al., 1999).

The authors thank the Latvian Scientific Council for financial support (grant No. 05.1552).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3054). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Campbell, J. A. (1975). Chemical Systems, Vol. 1, p. 415. Moscow: Mir. (In Russian.)
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and The University of Glasgow, Scotland.
Matjuhina, O. G., Belsky, V. K., Berzina, I. R., Bankovsky, Yu. A., Ashaks, J. V. \& Zuika, I. V. (1984). Izv. Akad. Nauk Latv. SSR Ser. Khim. 4, 400-406.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pech, L. J., Ozols, J. K. \& Ievins, A. F. (1973). Izv. Akad. Nauk Latv. SSR Ser. Khim. 3, 259-266.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Silina, E. J., Bankovsky, Yu. A., Belsky, V. K., Stash, A. I. \& Ashaks, J. V. (1997). Latv. J. Chem. 3, 24-32.

Silina, E. J., Bankovsky, Yu. A., Belsky, V. K., Stash, A. I., Pech, L. J. \& Ashaks, J. V. (2000). Zh. Neorg. Khim. 45, 1150-1155.

Silina, E. J., Belsky, V. K., Stash, A. I., Ashaks, J. V., Pech, L. J. \& Bankovsky, Yu. A. (2004). Russ. J. Inorg. Chem. 49, 470-476.

